skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liefert, David T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The use of the climatic anomaly known as the “4.2 ka event” as thestratigraphic division between the middle and late Holocene has prompteddebate over its impact, geographic pattern, and significance. The anomalyhas primarily been described as abrupt drying in the Northern Hemisphere atca. 4 ka (ka, thousands of years before present), but evidence of thehydroclimate change is inconsistent among sites both globally and withinNorth America. Climate records from the southern Rocky Mountains demonstratethe challenge with diagnosing the extent and severity of the anomaly.Dune-field chronologies and a pollen record in southeastern Wyoming revealseveral centuries of low moisture at around 4.2 ka, and prominent low standsin lakes in Colorado suggest the drought was unique amid Holocenevariability, but detailed carbonate oxygen isotope (δ18Ocarb) records from Colorado do not record drought at the sametime. We find new evidence from δ18Ocarb in a smallmountain lake in southeastern Wyoming of an abrupt reduction in effectivemoisture or snowpack from approximately 4.2–4 ka, which coincides in timewith the other evidence of regional drying from the southern Rocky Mountainsand the western Great Plains. We find that the δ18Ocarb inour record may reflect cool-season inputs into the lake, which do not appearto track the strong enrichment of heavy oxygen by evaporation during summermonths today. The modern relationship differs from some widely appliedconceptual models of lake–isotope systems and may indicate reduced winterprecipitation rather than enhanced evaporation at ca. 4.2 ka.Inconsistencies among the North American records, particularly in δ18Ocarb trends, thus show that site-specific factors can preventidentification of the patterns of multi-century drought. However, theprominence of the drought at ca. 4 ka among a growing number of sites in theNorth American interior suggests it was a regionally substantial climateevent amid other Holocene variability. 
    more » « less